

Supervisor: Ing. Vincenzo Mulone Co-Super

Co-Supervisor: Ing. Giacomo Bruni

30 October 2013 Engineering Sciences Università di Roma Tor Vergata

Content of the work

TARGET

> Evaluation of system performances (efficiencies)

INDEX

- 1. Description of the hybrid system
- 2. Control strategy
- 3. Experimental tests
- 4. Instruments calibration
- 5. Operations: data acquisition,correction,calculation of performances
- 6. Test results
- 7. Conclusion

- 1. Description of the hybrid system
- 2. Control strategy
- 3. Experimental tests
- 4. Instruments calibration
- 5. Operations: data acquisition,correction,calculation of performances
- 6. Test results
- 7. Conclusion

The hybrid system

> All components connected in parallel on a DC bus.

> Load continuously powered.

Photovoltaic Panels

- Energy from sun: highest priority of use
- MaximumPowerPointTracker and Charge controller

Batteries

2

100

80

60

40

State-of-charge (%)

20

Standard Electrolysis

- 1. Description of the hybrid system
- 2. Control strategy
- 3. Experimental tests
- 4. Instruments calibration
- 5. Operations: data acquisition,correction,calculation of performances
- 6. Test results
- 7. Conclusion

Control strategy

ひ Load power as reference quantity

• PV Power > Load Power

• PV Power < Load Power

→ Battery recharges (Bus voltage increases), Electrolyzer ON (if battery fully charged)

→ Battery discharges (Bus voltage decreases)

PV power + Battery Power
 < Load Power

→ Fuel Cell starts operating (constant voltage on the bus)

- 1. Description of the hybrid system
- 2. Control strategy
- 3. Experimental tests
- 4. Instruments calibration
- 5. Operations: data acquisition,correction,calculation of performances
- 6. Test results
- 7. Conclusion

- 1. Description of the hybrid system
- 2. Control strategy
- 3. Experimental tests

4. Instruments calibration

5. Operations: data acquisition,correction,calculation of performances

6. Test results

7. Conclusion

Instruments characterization: experimental setup

✓ For each measuring instrument, the error showed was in the tolerance range indicated by its producer!

- 1. Description of the hybrid system
- 2. Control strategy
- 3. Experimental tests
- 4. Instruments calibration
- 5. Operations: data acquisition,correction,calculation of performances
- 6. Test results
- 7. Conclusion

- 1. Description of the hybrid system
- 2. Control strategy
- 3. Experimental tests
- 4. Instruments calibration
- 5. Operations: data acquisition,correction,calculation of performances

6. Test results

7. Conclusion

"FC	0.453
т Н2	0.418 Kg

2nd TEST:	 ✓ 24 h tes ✓ Simulat irradiar ✓ Electrol ✓ PV power 	t ion of a sunny d nce profile yzer er doubled	day 2500
η 		0.955	
η _{Util} ,	sun	0.803	
% EnergyF	FromSun	216%	
η_{F}	С	0.435	
m H2	2	0.416 Kg	
η_{Ele}	ec.	0.478	
т H2, р	rod	0.323 Кд	

- 1. Description of the hybrid system
- 2. Control strategy
- 3. Experimental tests
- 4. Instruments calibration
- 5. Operations: data acquisition,correction,calculation of performances
- 6. Test results
- 7. Conclusion

Conclusions

The presented calibration of current clamps has been successful as:

 It allowed for accurate measurements of individual component and overall system performances.

 Energy and charge balance have been closed with an accuracy within 5% for the first test and 3% for the second test.

Moreover

The analysis of system behaviour under a sunny day shows good performance parameters of the individual components (e.g. FC and Electrolyzer efficiencies), giving a high interest toward its realization.

THANKS FOR YOUR ATTENTION!